Click Here ">
« October 2006 »
S M T W T F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
You are not logged in. Log in
Entries by Topic
All topics  «
Counterfactuals
defl@tionism
GENERAL LOGIC
HUMAN SEMANTICS
Interconnections
PARACONSISTENCY
Polemics
SCIENCE & NEWS
Cognition & Epistemology
Notes on Pirah?
Ontology&possible worlds
PRAGMATICS
PROPAEDEUTICS
Syn-Sem Interface
Temporal Logic
Blog Tools
Edit your Blog
Build a Blog
RSS Feed
View Profile
Translate this
INTO JAPANESE
BROTHER BLOG
MAIEUTIKOS
LINGUISTIX&LOGIK, Tony Marmo's blog
Thursday, 26 October 2006

Topic: Interconnections

The complexity of theorem-proving procedures


By Stephen A. Cook

It is shown that any recognition problem solved by a polynomial time-bounded nondeterministic Turing machine can be "reduced" to the problem of determining whether a given propositional formula is a tautology. Here "reduced" means, roughly speaking, that the first problem can be solved deterministically in polynomial time provided an oracle is available for solving the second. From this notion of reducible, polynomial degrees of difficulty are defined, and it is shown that the problem of determining tautologyhood has the same polynomial degree as the problem of determining whether the first of two given graphs is isomorphic to a subgraph of the second. Other examples are discussed. A method of measuring the complexity of proof procedures for the predicate calculus is introduced and discussed.

In Proceedings of the 3rd ACM Symposium on Theory of Computing, pages 151--158, 1971
Author's link (a compressed pdf file of a scanned version)
Other link


 


Posted by Tony Marmo at 18:37 BST

View Latest Entries